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ABSTRACT 

Crustal reservoir well-core sequences measured for porosity φ and permeability κ show a clear linear trend, logκ ~ αφ, when plotted as 

an ordered sequence in porosity.  For porosity expressed as a fraction of rock volume, 0 < φ < 1, the observed proportionality constant α 

is of order 15 < α < 35 for standard reservoir rock in porosity range 0.1 < φ < 0.3, and of order 300 < α < 700 for crystalline rock in 

porosity range 0.001 < φ < 0.01.  When porosity φ decreases an order of magnitude in basement crystalline rock, the proportionality 

parameter α increases an order of magnitude. The parameter value αφ ~ 3-4 is thus observed over more than two orders of magnitude 

porosity range, ~0.001-.01 < φ < ~0.1-0.3.  Parallel evidence consistent with parameter values αφ ~ 3-4 emerges upon integrating well-

core data sequences sampled at dm-to-m increments to give relation κ ~ κ0 exp(αφ) for well-productivity in the Dm-to-Hm scale 

range.   Wellbore productivity is observed to be lognormally distributed for flow of basement rock groundwater, 

conventional/unconventional hydrocarbons, convective geothermal fluids, and fossil fluid systems that generate mineral deposits.  The 

probability density function exp(αφ) gives lognormal distributions for αφ ~ 3-4.  The empiric αφ ~ 3-4 is also consistent with well-log 

spatial fluctuation power-spectral amplitudes throughout the crust.  Power-law scaling S(k) ∝ 1/k, ~1/km < k < ~1/cm, applies equally to 

well-log fluctuations in imporous/impermeable crystalline/metamorphic/basement rock and in porous/permeable reservoir rock.  Power-

law scaling spatial fluctuations in geological media imply a critical state crustal process which generates the long-range spatial 

correlations attested in well-log spectral scaling, and the long-range grain-scale spatial-connectivity fluid flow structures observed in 

well production lognormality.    With EGS stimulation via wellbore-centric fluid pressurization in mind, we adduce further evidence for 

αφ ~ 3-4 by quantifying the effect on inter-granular fluid flow of introducing a single grain-scale pore into an existing poroperm 

structure with n pores, n → n +1.  The effect of incremental increase in porosity on fluid flow velocity in a crustal volume is greater for 

granular percolation flow than for the smooth Poiseuille flow typically assumed for standard fracture-flow models.  Expending EGS 

crustal deformation energy on creating flow-related defects is two to three times more effective in accommodating fluid pressure for 

granular percolation flow than for creating open fractures as in past EGS stimulation models.  We can thus expect EGS wellbore fluid 

pressurisation to preferentially increase crustal fluid flow capacity through incrementing porosity associated with granular percolation 

flow structures than through creating smooth-fracture flow-conduits.  As attempts at EGS basement rock stimulation via generating 

planar fracture surfaces have repeatedly failed, our αφ ~ 3-4 inference accords well with field-scale stimulation experience.  The 

underlying physics implied by crustal flow empirics can be readily expressed by adapting the 2d/3d Ising model of critical-state 

ferromagnetism to fluid flow in granular media, with αφ ~ αφcrit ~ 3-4 playing a decisive role as critical-state system parameter. 

Accordingly, it would seem likely that the observed rock-fluid interaction empirics are fundamental physical statements about the 

crustal brittle-fracture domain, and as such should be incorporated into EGS projects.   

  

1. INTRODUCTION 

A large volume of well-log, well-core, and well-flow empirical evidence defines the pervasive spatial-correlation nature of fluid flow 

through crustal reservoir rock.  Well-log spatial fluctuations in geological settings worldwide are characterised by power-law spectral 

scaling in spatial frequency k, S(k) ∝ 1/k1, over five to six orders of scale magnitude, ~1/cm < k < ~1/km [1].  Well-core sequences from 

hydrocarbon-bearing crustal reservoir formations worldwide show that spatial variations in porosity correlate with spatial variations in 

the logarithm of permeability, δφ ∝ δlogκ, over m-Hm scale lengths [2-3].  Crustal permeability κ at the scales of well-flow productivity 

is lognormally distributed for groundwater, conventional and unconventional hydrocarbons, and geothermal fluids, along with the 

mineral deposits of fossil flow systems, as given by κ ∝ exp(αφ) for normally distributed porosity φ in association with observed values 

of empirical poroperm parameter α [3-4]. 

At least two questions arise from these crustal fluid flow spatial-correlation empirics:  

 How do fluid-rock interactions generate the spatially-correlated lognormal fluid flow distributions abundantly seen in 

crustal reservoir formations for porosity range 0.1 < φ < 0.3? 

 What happens to crustal fluid flow properties when porosity decreases by an order of magnitude, φ < 0.01, at increasing 

crustal depths? 

The answers to these two questions appear to be closely linked.  Data on fluid flow in tight crystalline rock indicate that the long-range 

spatial-correlation empirics of crustal reservoir flow persist to porosities φ < 0.01 and permeabilities κ < μD characteristic of rock at the 

mailto:pcl@asirseismic.com


Leary et al. 

 2 

5-10 km depth range.  More specifically, a fixed mean product magnitude αφ ~ 3-4 characteristic for a range of hydrocarbon-bearing 

sandstones is observed to persist in low-poroperm crystalline basement rock.  An order-of-magnitude decrease in basement rock 

porosity, φ < 0.01, compensated by empirical parameter α increasing by an order of magnitude, α ~ 300-400, gives parameter product 

estimates of αφ ~ 1.5-3.5.  An essentially fixed magnitude for poroperm parameter αφ over a 2-decade crustal rock porosity range 0.003 

< φ < 0.3 implies that crustal rock spatial correlations S(k) ∝ 1/k and lognormal well-flow distributions κ ∝ exp(αφ) over a wide range 

of crustal fluids and geological settings are associated with αφ ~ 3-4 as fundamental to the physics of crustal rock-fluid interactions. 

The empirics of crustal rock power-law-scaling spatial correlation in company with a fixed system parameter, here αφ ~ 3-4 associated 

with lognormal permeability distributions, have clear parallels in physical systems undergoing a class of thermodynamic phase 

transition.  Examples of such phase transition macroscale collective behaviour of microscale system elements at a fixed system 

temperature are ferromagnetism in iron atom assemblages and density fluctuations in liquid-gas interface states [5].   The observed 

physical system macroscale spatial correlation properties are in turn closely replicated by numerical simulations with the Ising model 

mathematical representation of ferromagnetic and liquid-gas spatial fluctuation states [5-8].  An Ising model numerical representation of 

crustal rock-fluid interactions between active grain-scale crustal elements provides a compelling perspective on the long-range spatial 

correlation empirics of crustal flow systems.     

A physics-based interpretation of crustal fluid flow heterogeneity generated by spatially-correlated interaction of system elements at all 

scale lengths is a vast improvement over the statistics-friendly default assumption that rock-fluid interactions are effectively spatially 

uncorrelated at essentially all scales and hence their spatial fluctuations can be simply ignored by averaging over relevant spatial 

domains [9-16].  The assumed quasi-uniformity that spatial averaging gives to the mechanical properties of crustal rock has typically 

been the basis for projects to engineer or enhance increased crustal permeability for heat energy extraction [17-20].  These crustal flow 

stimulation attempts have not met with success [21-24].    

Application of the Ising model to crustal fluid flow empirics can bring conceptual clarity to an economically important topic that 

remains poorly understood in physical terms and poorly handled by application of standard statistical assumptions.  After illustrating 

how the Ising model reproduces spatial correlation empirics of crustal rock for an assumed critical-state parameter, we support the Ising 

model application to crustal rock-fluid interaction empirics with evidence for the parameter value αφ ~ 3-4.  Some three thousand well-

core samples from hydrocarbon reservoir rock provide the estimate αφ ~ 3.74 ± 0.91.  We then review crystalline rock well-core and 

well-flow evidence that a decade drop in porosity, φ < 0.01, is accompanied by decade rise in α ~ 300-700 to maintain the parameter 

value αφ ~ 1.5-3.5.  A discussion section detailing the analogy between the Ising model and crustal rock-fluid interaction leads to a 

concluding section aimed at defining the engineering mechanics needed for wellbore-to-wellbore flow stimulation in low-porosity/low-

permeability basement rock.  Achieving adequate wellbore-to-wellbore flow in the deep crust gives access to the 108 quads of carbon-

free heat energy that exceed by a factor 100 the 0.5∙106 quads held in the earth’s fossil fuel store. 

2. THE ISING MODEL 

The Ising model mathematically simulates the collective spatial-correlation interactions of ferromagnetic atoms and liquid-gas system 

molecules that occur during system critical-state phase transitions [5-6].  The model is based on a lattice system of energy-interaction 

nodes in either 2 or 3 dimensions.  Each Ising model lattice node is the site of an active system element (‘atom’ or ‘molecule’) that can 

be in one of two interaction-energy states.  For ferromagnetism, the nodal interaction-energy states are associated with the alignment or 

anti-alignment of the iron atom magnetic dipole with an applied magnetic field.  For the liquid-gas phase transition, the nodal 

interaction-energy states are associated with the low or high compressibility of a unit of liquid-gas volume.   To represent collective 

behaviour in a crustal rock-fluid system, we identify the Ising model interaction-energy nodal states with grain-scale fluid flow 

conditions: a nodal state that permits grain-scale fluid flow between nearby pores, and a nodal state that blocks grain-scale fluid flow 

between nearby pores.   

In making this nodal interaction-energy assignment for crustal rock-fluid interaction, we are in effect asking if the interaction-energy 

state of one grain-scale flow condition can significantly influence the interaction energy state of nearby grain-scale flow conditions?  

And if such grain-scale flow/no-flow energy-interactions occur, can these interactions lead to long-range macroscopic collective spatial 

organisation in which spatial groupings of grain-scale flow conditions influence other groupings of grain-scale flow conditions in the 

scale-independent manner observed in ferromagnetic and liquid-gas phase transitions?   

The great power of the Ising model is that a 2d model lattice of interacting nodal energy states mathematically guarantees the existence 

of a system energy state that reproduces the spatially-correlated collective action we seek to replicate [6].  In the context of the second 

law of thermodynamics, if the Ising lattice nodal interaction-energy is large enough relative to the mean thermal energy at each node, 

then it is mathematically certain for a 2d lattice that at a specific mean nodal thermal energy, node-node interaction-energy states will 

behave collectively to replicate the physical behaviour of ferromagnetic and liquid-gas phase transitions, and by extension the empirics 

of the crustal rock-fluid flow.   

Figure 1 illustrates how Ising model microscale interaction-energy states interact to replicate the spatial complexity empirics of crustal 

fluid-rock interactions.  In applying the Ising model, it is assumed that the empirical rock-fluid interaction parameter αφ duplicates the 

role of mean system equilibrium temperature θ in controlling the spatial-correlation properties of crustal rock-fluid interaction 

heterogeneity.  The Figure 1 model spatial correlations are produced by Matlab code given in the Appendix 1.   

The control parameter in Figure 1 Ising model spatial-correlation phenomenology is the lattice system thermal equilibrium mean energy 

θ relative to the mathematically-guaranteed critical-state temperature θcrit.  The left-hand nodal-energy spatial distribution is for θ = θhigh 
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> θcrit.  At this system energy, Ising lattice nodal interaction energies are uncorrelated at all scale lengths; the spatial fluctuations 

recorded by a transecting well-log correspond to white noise with flat power-spectral scaling S(k) ∝ 1/k0.  The right-hand nodal-energy 

distribution is for θ = θlow < θcrit.  At this system energy, Ising lattice nodes approach maximum spatial correlation at all scale lengths, 

with well-log spatial fluctuation spectra corresponding to strong partition of nodal energy states as given by the power-spectrum of a 

step-function, S(k) ∝ 1/k2.  The center nodal-energy distribution is for θ ~ θcrit, the mathematically guaranteed Ising model system 

energy at which long-range spatially-correlated phase transitions occur.  For θ ~ θcrit, the corresponding lattice nodal energy fluctuations 

recorded by well-logs through the medium replicates the crustal rock-fluid interaction spatial-correlation power-spectral condition S(k) 

∝ 1/k1 seen in well-log spatial fluctuation power-spectral scaling worldwide [1]. 

                         

Figure 1 -- Ising 2d model spatial distributions of lattice nodal interaction-energy for three values of system equilibrium thermal 

energy θ relative to a critical state thermal energy θcrit that is mathematically known to exist.  (Left) System thermal energy θ > 

θcrit, in which nodal thermal energy is too high for node-node interactions; the resulting nodal energy distribution is white noise 

with zero spatial correlation generating well-log spectral scaling S(k) ∝ 1/k0 over 3 decades of scale length. (Right) System 

thermal energy θ < θcrit, in which nodal thermal energy is dominated by node-node interaction energy; the resulting nodal 

energy distribution is red noise with high degree of spatial correlation, with well-log spectral scaling S(k) ∝ 1/k1.8 over 3 decades 

of scale length. (Center) System thermal energy θ ~ θcrit, with nodal thermal energy comparable to node-node interaction 

energy; the resulting nodal energy distribution is pink noise with moderate degree of spatial correlation, giving well-log spectral 

scaling S(k) ∝ 1/k1 over 3 decades of scale length.  The Ising model application to crustal rock-fluid interactions implies that the 

empirical crustal parameter αφ ~ 3-4 plays the role of the mathematically mandated critical mean thermal energy θcrit. 

Interpreting Figure 1 Ising model spatial distributions of lattice nodal energies in terms of crustal rock-fluid interactions, the S(k) ∝ 1/k1 

transition spatial correlation state of crustal rock-fluid interaction empirics lies between a high energy crustal rock state, θ > θcrit, that 

corresponds to chemical and mechanical disaggregation of cements and mineral grains at uppermost crustal depths, and a low energy 

crustal rock state, θ < θcrit, that corresponds to chemical and mechanical homogenization of cements and mineral grains by ductile 

deformation at lower crustal depths.  Prospectively, the crustal rock-fluid interaction poroperm parameter values αφ ~ 3-4, which occur 

across two-decades crustal porosity 0.003 < φ < 0.3 in association with S(k) ∝ 1/k1 spatial correlations, correspond to the Ising model 

critical energy θcrit.  The existence of a fixed crustal rock-fluid interaction poroperm parameter αφ ~ 3-4 is logically equivalent to Ising 

model system equilibrium thermal energy (αφ)crit ≡ θcrit.  Values of αφ significantly above and below the critical state value (αφ)crit 

characterise the very different uppermost- and lower-crustal rock-fluid interaction regimes.  From the Figure 1 spatial-correlation 

systematics, it follows that vanishing crustal porosity levels, αφ < (αφ)crit, correspond to the ductile deformation state of rock in the 

lower crust (S(k) ∝ 1/k2), and excessive crustal porosity levels correspond to the disaggregation state of uppermost crustal rock (S(k) ∝ 

1/k0). 

3. EVIDENCE FOR αφ ~ 3-4 IN HYDROCARBON RESERVOIR FORMATIONS 

Well-core from exploratory wells in conventional hydrocarbon reservoirs are typically available to estimate the total hydrocarbon 

reserve (formation porosity) and its production rate (formation permeability).  As such, there are many poroperm data at intervals of 

order 1 meter over Dm- to Hm-scale formations with porosity of order 0.1 < φ < 0.3 and permeabilities of order 0.01mD < κ < 100mD 

(10-17–10-13m2).   

 

Well-core sequences from hydrocarbon-bearing reservoir formations worldwide show variation in porosity to be spatially correlated 

with variation in the logarithm of permeability, δφ ∝ δlogκ [2-4].  The proportionality constant α for this spatial correlation relation is 

estimated by plotting logκ against φ for suites of well-core poroperm data from hydrocarbon reservoir formations.   

 

The five following tables and figures estimate the proportionality parameter α for representative hydrocarbon-bearing sandstone 

formations: (i) Tirrawarra gas field, South Australia; (ii) Toolachee gas field, South Australia;  (iii) Brae oil field, North Sea; (iv) 

Bierwang gas field, Germany; (v) Lewis Shale, Wyoming.  For each poroperm sample, the relation δφ ~ α δlogκ is pictured, with a 

table supplying the formation or well name, number of core samples giving both porosity and permeability over a limited depth range 

(Dm for gas field, Hm for oil field), core sample depth interval, minimum, maximum, and median well-core porosity percentages, 
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minimum and maximum permeability in milliDarcies, percentage spatial-correlation of the porosity versus logarithm of permeability 

poroperm spatial fluctuation sequence, value of α, and value of the product parameter αφ.   

 

Table 1 collects the αφ mean value estimates for the five hydrocarbon reservoir sites.  For comparison, also given are αφ well-core 

determinations from the KTB deep well in Germany and well-core + well-flow data from the Borrowdale Volcanics crystalline rock 

near Sellafield nuclear facility, Cumbria, UK presented below. 

 

 Table 1 – Mean αφ poroperm properties for five hydrocarbon-bearing formations and two crystalline rock formations 

 

 

 

2.1 Tirrawarra gas field, South Australia  

 

Table 2 – Well-core φ-log(κ) data for Tirrawarra gas field formations. 
FORMATION Sam

ple # 

Zmn 

(m) 

Zmx 

(m) 

φmn 

(%) 

φmx 

(%) 

φmd 

(%) 

κmn 

(mD) 

κmx 

(mD) 

χ(%) α αφ 

TIRRAWARRA A 63 2694 2786 2 16 11 0.0770 126 55 22 2.42 

TIRRAWARRA B 73 2838 2885 5 15 10 0.0400 46 57 22 2.20 

TOOLACHEE A 53 1949 1997 8 23 16 0.0100 551 56 31 4.96 

TOOLACHEE B 41 2087 2103 2 20 9 0.0100 393 84 29 2.61 

HUTTON 20 1817 1850 4 21 12 0.0070 2140 69 33 3.96 

NAMUR A 29 1235 1256 6 29 25 0.0400 2281 57 18 4.50 

NAMUR C 32 1517 1549 4 23 20 0.0230 2799 67 24 4.80 

NAMUR D 34 1578 1587 8 24 20 0.2000 1560 52 20 4.00 

NAMUR E 42 1752 1768 10 18 15 0.3750 1213 49 31 4.65 

BIRKHEAD A 25 1559 1574 7 25 22 0.0050 1649 62 21 4.62 

BIRKHEAD B 47 1639 1657 12 27 22 0.7120 4880 41 18 3.96 

BIRKHEAD C 110 1814 1842 3 22 11 0.0010 2018 44 27 2.97 

MCKINLAY 122 1176 1256 7 28 20 0.0050 2869 52 20 4.00 

 

SITE Sample # Sample Mean αφ 

Tirrawarra gas field, South Australia 691 αφ = 3.82 ± 0.95 

Toolachee gas field, South Australia 251 αφ = 4.06 ± 1.00 

Brae oil field, North Sea 757 αφ = 2.71 ± 0.38 

Bierwang gas field, Germany 1189 αφ = 3.90 ± 0.72 

Lewis Shale analogue reservoir, Wyoming 131 αφ = 4.22 ± 1.5 

KTB, Germany (4-6 km) 31 αφ = 1.3 ± 0.05 

Borrowdale Volcanics, Sellafield, Cumbria, UK -- αφ = 4.6 ± 1.2 
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Figure 2 – Well-core φ-log(κ) linear relation for Tirrawarra gas field formations (Table 1); each subplot is titled with value αφ 

given by linear trend coefficient α and mean porosity φ.  

 

2.2 Toolachee gas field, South Australia 

 

Table 3 – Well-core φ-log(κ) data for Toolachee gas field formations. 
FORMATION Sample # Zmn (m) Zmx (m) φmn (%) φmx (%) φmd (%) κmn (mD) κmx (mD) χ(%) α αφ 

MURTA 33 1192 1244 12 23 19 0.64 2550 77 28.2 5.35 

MURTA 96 1202 1253 9 28 20 0.51 1717 89 22.7 4.54 

DARALINGIE 31 2387 2793 4 19 14 0.60 576 82 24.2 3.39 

TOOLACHEE 18 2381 2573 9 14 11 0.53 213 95 47.7 5.25 

PATCHAWARRA 43 2243 2284 9 20 15 1.50 439 84 25.8 3.88 

BIRKHEAD 16 1616 1635 10 25 20 0.82 792 72 15.2 3.04 

PATCHAWARRA 14 2913 2935 8 15 9 0.51 137 96 33.2 2.99 

 

Figure 3 – Well-core φ-log(κ) linear relation for Toolachee gas field formations (Table 2); each subplot is titled with value αφ 

given by linear trend coefficient α and mean porosity φ.  
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2.3 Brae oil field, North Sea 

 

Table 4 – Well-core φ-log(κ) data for Brae oil field formations 
WELL # Sample 

# 

Zmn 

(m) 

Zmx 

(m) 

φmn 

(%) 

φmx 

(%) 

φmd 

(%) 

κmn 

(mD) 

κmx 

(mD) 

χ(%) α αφ 

BRAE_16_7_3 141 8 809 1.6 15 10 0.0060 74 83 25.3 2.53 

BRAE_16_7A_27 46 56 384 2 17 11 0.2200 502 83 25.7 2.93 

BRAE_16_7A_22 261 970 1426 1.5 22 12 0.0200 1990 79 25.9 3.11 

BRAE_16_7A_C5 118 179 456 1.7 18 11 0.0400 669 74 20.2 2.17 

BRAE_16_7A_C5a 86 458 732 2.0 18 12 0.0500 625 75 21.1 2.45 

BRAE_16_7A_C3 105 581 1470 1.4 24 120 0.1000 2960 86 25.8 3.09 

 

 
Figure 4 – Well-core φ-log(κ) linear relation for Brae oil field formations (Table 3); each subplot is titled with value αφ given by 

linear trend coefficient α and mean porosity φ.  

 

 

2.4 Bierwang gas field, Germany 

 

       Table 5 – Well-core φ-log(κ) data for Bierwang gas field formations 
WELL # Sample # Zmn (m) Zmx (m) φmn (%) φmx (%) φmd (%) κmn (mD) κmx (mD) χ(%) α αφ 

BWB4 56 1606 1624 7.2 31 26 0.11 2259 78 15.8 3.95 

BW7 143 1521 1544 3.8 33 29 0.01 4100 86 16.2 4.51 

 BW15 60 1534 1541 2.8 32 30 2.26 9580 95 13.2 3.43 

 BW23a 342 1539 1596 4.4 31 25 0.29 4392 94 15.9 3.82 

 BW42 105 1678 1704 0.79 29 21 0.22 1202 94 16.0 3.08 

BW52 237 1543 1579 9.5 36 27 0.18 3394 87 16.7 4.46 

 BWB5 81 2000 2044 15.2 34 24 3.05 3473 79 17.2 4.27 

 BWB4 165 1704 1775 12.1 29 25 10.2 632 98 9.86 2.43 
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Figure 5 – Well-core φ-log(κ) linear relation for Bierwang gas field formations (Table 4); each subplot is titled with value αφ 

given by linear trend coefficient α and mean porosity φ.  

 

2.5 Lewis shale reservoir analogue, Wyoming 

 

Table 6 – Well-core φ-log(κ) data for Lewis shale analogue reservoir formation 

WELL 

INTERVAL 

Sample 

# 

Zmn 

(ft) 

Zmx 

(ft) 

φmn 

(%) 

φmx 

(%) 

φmd 

(%) 

κmn 

(mD) 

κmx 

(mD) 

χ(%) α αφ 

1 26 389  408 26 31 28 23.4 994 73 22.6 6.4 

2 37 448 486 24 31 28 36.1 342 77 12.8 3.6 

3 30 560 595 25 31 27 41.6 417 87 10.5 2.9 

4 38 856 894 23 32 29 51.2 916 91 13.8 4.0 

 

 

Figure 6 – Well-core φ-log(κ) linear relation for Lewis shale reservoir analogue formation (Table 5); each subplot is titled with 

value αφ given by linear trend coefficient α and mean porosity φ.  
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4. EVIDENCE FOR αφ ~ 1.5-3.5 IN CRYSTALLINE ROCK 

The abundance of well-core evidence for crustal reservoir poroperm systematics δφ ∝ δlogκ [2-3] and κ ∝ exp(αφ) [4] in porosity range 

.03 < φ < 0.3 is not replicated for crystalline basement rock with porosity range φ < 0.01.  The relation δφ ∝ δlogκ is examined for suite 

of 31 well-core poroperm data for the KTB, Germany, deep well between 4 and 6 km (Appendix 2).  The KTB data are particularly 

relevant, both because the well-core data format is similar to the crustal reservoir poroperm data format, and because KTB well-logs 

clearly indicate that spatial fluctuation power-spectral trend S(k) ∝ 1/k1 persists unabated to 8-9 km depths [25].  Analysis of KTB 

poroperm data is followed by a more general analysis of crystalline rock poroperm data from the Borrowdale Volcanics formation 

adjacent to the Sellafield nuclear facility in Cumbria, UK, investigated as a prospective nuclear waste repository [26-28].  

Both the KTB and Sellafield data sets clearly indicate that, despite the order of magnitude lower porosity, φ < 0.01, crystalline rock 

maintains a good approximation the crustal reservoir norm, αφ ~ 3-4.  In establishing this result, it becomes plausible that the crustal 

rock-fluid interaction environment active at crustal reservoir depths to 5km does not disappear with below 5km in response to increasing 

confining pressure, reduced porosity, and retirement of mobile crustal fluids into hydrated minerals.  It is thus plausible that 

understanding of the spatial-correlation mechanics of the highly-documental naturally occurring crustal rock-fluid interaction of 

hydrocarbon reservoir systems can be effectively transferred to basement rock.  In particular, these systematics indicate that increasing 

crustal depth does not translate into decreasing or vanishing spatial-correlation heterogeneity, explicitly countering the standard notion 

that rock-fluid interactions become quasi-uniform at depth. 

The KTB well poroperm data recovered from well intervals spanning 4 to 6 km depths are divided into four orientations with respect the 

wellbore axis and rock fabric.  Core denominations are ‘s’ and ‘p’ for core perpendicular and parallel to rock fabric, and ‘a’ and ‘r’ for 

core axial and radial with respect to the wellbore.  Figure 7 compares the spatial correlation of fluctuations in well-core porosity (blue) 

and logarithm of permeability (red) for the four well-core orientations.  Each data trace is expressed in zero-mean/unit-variance format.   

The degree of spatial correlation for the Figure 7 poroperm sequences are respectively 66%, 68%, 69% and 74%.  Taken alone, the 

observed poroperm spatial correlation values are suggestive but are not statistically significantly relative to the null hypothesis that these 

correlation values are the product of random chance.  A second datum, however, greatly increases the statistical significance of the 

sequence spatial correlations: for each Figure 7 trace pair, the maximum correlation occurs at zero lag.  Simulating Figure 7 for 100,000 

instances of gaussian random numbers instead of KTB poroperm data indicates that there less than 1 part in a million chance that the 

quartet of Figure 7 zero-lag correlation values are the product of pure chance.    

  

Figure 7 – KTB well-core spatial correlation δφ ∝ δlog(κ); zero-mean/univariance format; φ =blue, δlog(κ) = red; well-core 

from depth interval 4-6km (Appendix 2). 

 
Figure 8 evaluates the slope of the φ – logκ linear relation for the four KTB well-core orientations. Aside from a single point of porosity 

above 2%, the results of the linear fits give values of slope α as 320, 330, 99 and 280 respectively.  If the data re restricted porosities less 

than 1%, then the slope α ~ 99 increases to α ~ 300.  In light of the infrequency of porosities above 1%, it may transpire that the higher 

porosities are the result of the core being somewhat fractured, either naturally or by the coring process. From Figure 8, we can conclude 

that KTB deep crystalline rock appears to be characterised by values of α that are an order of magnitude greater than the values of α for 

crustal reservoir rock with porosities an order of magnitude greater.  As each the quartet of KTB core samples has mean porosity ~ 

0.5%, KTB well-core are characterised by poroperm product parameter value αφ ~ 1.5.   
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Figure 8 – KTB well-core relation κ ∝ exp(αφ); data blue circles; exponent fit for poro-connectivity parameter α (red); well-core 

from depth interval 4000m-6000m (Appendix 2).  Omitting the two poroperm data with porosity greater than 1%, gives 

mean value α ~ 300 and poroperm product parameter value αφ ~ 1.5. 

A suite of well-scale permeability and well-to-well connectivity data were acquired at the UK nuclear waste disposal test site at 

Sellafield in Cumbria [26-28].  The geological unit investigated was the Borrowdale Volcanic Group (BVG) of metamorphosed 

Ordovician volcanics which outcrops to form the 50km by 50km area of 1000m topographic relief in England’s Lake District.   Figure 

10 shows normal probability distributions for 50-meter well-interval hydraulic conductivities acquired during and after drilling.  Figure 

11 shows BVG well-core samples porosity distributions.  The Figure 10 data format is that of ‘normal probability’, in which a straight-

line trend implies a normal distribution for the variable plotted along the x-axis.  As the plotted variable in Figure 9 is the logarithm of 

the observed hydraulic conductivity K [m/s], the data show that over five decades of hydraulic conductivity the BVG formation has a 

lognormal distribution of hydraulic conductivity.   

               

Figure 9 -- Normal probability plots of post-drilling wellbore flow test data (left) and while-drilling wellbore flow test data 

(right) for the Sellafield Rock Characterization Project in the Borrowdale Volcanics Group (BVG), Cumbria, UK [26]. 

The Figure 9 left-hand normal probability plot covers extensive post-drilling flow tests designated FST (full sector test) [27].  The right-

hand normal probability plot covers the more limited EPM (environmental pressure measurement) conducted over 50 meter intervals 

during drilling operations.  Permeability κ [m2] is linearly related to hydraulic conductivity through the factor μ/ρg ~ 10-7m⋅s, κ = K 

μ/ρg, for the dynamic viscosity of water μ ~ 10-3Pa⋅s, density of water ρ ~ 103kg/m3, and acceleration of gravity g ~ 10m2/s.  BVG field-

scale permeability ranges from κ ~ 10-19m2 to κ ~ 10-14m2, with measured well-core permeability between κ ~ 10-17m2 to κ ~ 10-14m2.  

Higher and lower values of field-scale permeability, appearing in the parts of the distribution that deviate from a straight-line trend, 

represent outliers of increasingly sparse sample numbers.  Field-scale permeability is observed to divide into two categories: flow 

volumes without evidence of faults/fractures, κ ~ 10-19m2 to κ ~ 10-17m2, and flow volumes with evidence of faults/fractures, κ ~ 10-17m2 

to κ ~ 10-14m2. 
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We can relate BVG permeability to BVG porosity through the empirical expression  ≈  exp(( - )).  Figure 10 indicates BVG 

porosity data in terms of observed failure types under uniaxial compression [28].  An order of magnitude estimate BVG porosity is  ~ 

1% with minimum value  ~ 0.1% 

  

Figure 10 – Porosity and uniaxial compression test data for BVG well-core, Sellafield, Cumbria, UK [28]. 

Using the poroperm relation with adjusted parameter values for ,  and , Figure 11 plots show simulated field-scale hydraulic 

conductivity normal probability distributions.  For a permeability field generated by a Gaussian distribution of 150 core samples with 

minimum porosity ~ 0.03% and maximum porosity ~ 1%, the observed hydraulic conductivity distributions have best-fit poroperm-

connectivity parameters values  ~ 1000, 600 and 700 for plots left to right.  

             

Figure 11 -- Synthetic normal probability plots for hydraulic conductivity fitting BVG post-drilling FST wellbore flow data.  

Fitting the synthetic plots to a normal distribution of porosity in the porosity range of Figure 10 generates the plotted normal 

probability distributions for values of α 1000, 600 and 700, respectively. 

The EPM BVG field-scale permeability distribution data imply a minimum permeability κ ~ 3 10-20m2 for crustal volumes with no 

evidence of passing fluid through extent fracture structures, and a minimum BVG permeability κ ~ 3 10-18m2 for crustal volumes with 

evidence of passing fluid through extent fracture structures.  The Figure 11 implied values of poroperm connectivity parameter α 

inferred from observed well-scale flow data constrained by observed well-core porosity data are, respectively, 1000, 500 and 700.  

Taking mean BVG porosity to be  ~ 0.6%, the characteristic αφ value for the BVG crystalline rock is αφ ~ 4.6 ± 1.2. 

5. ISING MODEL INTERPRETATION OF CRUSTAL ROCK-FLUID COUPLING PARAMETER αφ ~ 3-4 

Figure 1 illustrates the macroscopic spatial correlation systematics of the Ising model system of interacting microscale elements.  

According to the Ising model mathematical structure, three types of spatial correlation necessarily exist [6].  As as a function of system 

temperature θ in relation of a critical state temperature θcrit, the three spatial correlation states are: 
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 Uncorrelated or gaussian ‘white noise’ spatial randomness, which occurs when the system temperature θ is higher than the 

system critical temperature, θ > θcrit; the corresponding well-log spatial frequency power spectrum is flat, S(k) ∝ 1/k0. 

 Strongly correlated ‘red noise’ spatial randomness, which occurs when the system temperature θ is lower than the system 

critical temperature, θ < θcrit; the corresponding well-log spatial frequency power spectrum scales as S(k) ∝ 1/k2. 

 Intermediate correlated ‘pink noise’ spatial randomness, which occurs when the system temperature θ is near the system 

critical temperature, θ ~ θcrit; the corresponding well-log spatial frequency power spectrum is S(k) ∝ 1/k1. 

Empirically, the spatial fluctuation properties of the crustal rock-fluid interaction system correspond to the last of these three spatial 

fluctuation options, with well-log spatial fluctuation power spectra observed worldwide to scale with spatial frequency k as S(k) ∝ 1/k1 

[1]   This essentially universal aspect of crustal rock-fluid interaction is accompanied by the empirical condition that well-core and well-

flow data indicate that the observational parameter αφ is observed to occur in a narrow range of values, αφ ~ 3-4, derived from the well-

core poroperm relation, logκ ~ αφ across for a range of geological settings that span two decades of rock porosity value, .003 < φ < 0.3 

[2-3].  Values of order αφ ~ 3-4 are consistent with the observation that crustal reservoir fluids worldwide are lognormally distributed as 

given by the empirical relation κ ∝ exp(αφ) [4].      

By analogy with Figure 1 spatial correlation systematics, it would appear that αφ ~ 3-4 represents a critical-state condition for 

microscale energetics of the crustal rock-fluid interaction.  Making this analogy allows us to interpret the observed values of well-core 

sequence and field-scale flow data αφcrit ~ 3-4 as equivalent to the mathematically-mandated critical system temperature θcrit at which 

the Ising model phase transition takes place and long-range spatial correlations naturally emerge from the otherwise short-range thermal 

interactions.  

To explore this identification, we first note how the internal properties of the Ising system are applied to the standard statistical 

mechanical treatments of ferromagnetism and the lattice gas phase transition [5-6].   We then generalise the standard statistical 

mechanics to incorporate a wider range of system element interaction energy processes that accommodates the empirical crustal rock-

fluid interaction condition αφcrit ~ 3-4 [7-8].  In the background of any discussion of physical system analogues for the Ising model lies 

the mathematical demonstration that the Ising model interpreted in terms of the 2nd law of thermodynamics necessarily has a critical 

temperature that marks a phase change between essentially uncorrelated system randomness and highly correlated system randomness 

[5-6].  The crustal rock-fluid interaction spatial correlation empirics thus seem likely to arise from a deeply fundamental physical 

process linking crustal rock-fluid microscale energetics to crustal rock-fluid macroscale spatial correlations.   

5.1 Statistical mechanics of Ising model ferromagnetic and lattice gas phase transitions 

The kinetic energy of atoms and molecules in solids, liquids and gases (along with the historically important electromagnetic field 

energy coupled to atoms and molecules) is a fundamental and pervasive energy reservoir that can profoundly affect the energy 

distribution within material systems.  The 1st law of thermodynamics states that the energy of a material system and its environment is 

conserved.  The 2nd law of thermodynamics states that the ‘heat energy reservoir’ effect on material system energy distribution forces 

the system to go from a less probable more ordered state to a more probable less ordered state.  The more probable state is less spatially 

organised state; i.e., thermal systems evolve from more internal order to less internal order.  Under the 2nd law constraint, the interaction 

energetics of atoms, molecules, and their larger-scale assemblages such as mineral grains and associated cements, are effectively taxed 

by irreversibly leaking part of their interaction energy to an ever-present ‘heat bath’ energy reservoir.  Universally, the state of the ‘heat 

bath’ energy reservoir is associated with a temperature T corresponding to the mean-kinetic energy of the constituent atoms and 

molecules (and potentially an associated electromagnetic field).  In some cases, however, the role of system structure ‘information’ is 

entrained in the dynamics of internal energy organization.   

Given the pervasive nature of the thermal process constraint of the ‘heat bath’ of ambient thermal energy reservoir, it should be no 

particular surprise that crustal rock-fluid interaction energetics are influenced by the temperature of the crustal ‘heat bath’.  What can be 

extremely surprising, however, is the intricate coupling between the system elements and their ‘heat bath’ energy reservoir.  It is the 

genius of the Ising model to manifest in simple terms the strange and wonderful interaction between the Ising model system elements 

and the ‘heat bath’ temperature in the presence of which the Ising system elements exchange their interaction energy.  With the Ising 

model as guide, it is possible to associate lattice system energetics with a more general manifestation of the 2nd law of thermodynamics 

expressed in terms of a more general concept of the ‘heat bath’ energy reservoir.  This generalisation gives physical meaning to the 

crustal rock-fluid interaction empirical datum αφcrit ~ 3-4.   

In 1877, Boltzmann interpreted the existing expressions of the 2nd law of thermodynamics in terms of the probability pi of a given 

energy state εi for the ith element in a physical system at thermal equilibrium temperature T,  

pi = exp(-εi/kBT) / ∑i=1…N exp(-εi/kBT),     (1) 

where kB = R/NAV is Boltzmann’s constant fixed by the observed properties of gases interpreted by the ideal gas law PV = RT and 

measurement of Avogadro’s number NAV, and probability ranges from 0 to 1. 

The total energy of the system is the sum over all element energies εi weighted by the energetics weight factor exp(-εi/kBT),  

E = ∑i=1…N  εi exp(-εi/kBT).      (2) 

The parallel sum   
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S = ∑i=1…N  pi log(pi) = -1/kBT   ∑i=1…N  pi εi     (3) 

is the system parameter entropy S that links the probability pi of a site energy value to the site energy magnitude εi.  In these functions of 

site energy magnitude and site energy probability, the role of system temperature T as a measure of the thermal energy heat bath energy 

reservoir is fundamental.   

The Ising system model assigns one of two energy states εi, i = 1,2, to each node in a 2d or 3d lattice of N nodes.  The Ising model 

thermodynamic state is thus expressed explicitly by counting the nodes in the two energy states.  For a physical assemblage of iron atom 

magnetic dipoles of magnitude m with nodal ‘spin states’ si that are either +1 or -1, the macroscopic observable mean magnetic moment 

M is the parallel of system energy (2), 

M = m ∑i si exp(-εi/kBT).       (4) 

In the absence of an external magnetic field to orient the atomic dipoles, it is logical to expect that there is no preferred atomic 

alignment direction for any system temperature θ, as the sum (4) over nodal states can be expected to have as many +1 alignments as -1 

alignments,  the giving M ~ 0 [5].  This expected nodal state spatial distribution is illustrated in Figure 1 by the left-hand disordered 

‘white noise’ Ising model state.  Applied to crustal rock-fluid interactions, it is similarly logical that, in the absence on a particular 

internal interaction mechanism, the natural crustal rock state is the uncorrelated randomness of ‘white noise’ spatial fluctuations which 

can be averaged over in the sense of (4) giving mean magnetisation M ~ 0.   

The ‘logic’ of (4) is, however, defied by the phase transition behaviour of physical systems.  As illustrated by the Ising model 

simulations in Figure 1, the mathematical model can generate long-range spatial distribution simulations of physical system behaviour 

that defy the M ~ 0 expectation of (4).  The phenomenon of ferromagnetism provides the physical evidence for energy states that violate 

expectation (4).  The mathematical origin of the transition between short-range interactions (left-hand white noise distributions of Figure 

1) and long-range interactions (center and right-hand pink noise and red noise distributions of Figure 1) was established in a 1935 

mathematical analysis of Ising model behaviour [6].   

              

Figure 12 -- Ising 2d model spatial distributions of lattice nodal interaction-energy assuming that the boundary elements all exist 

in a ‘+’ state [6].  While (4) implies there will be as many ‘-‘ states as ‘+’ states in the interior of the Ising model lattice, it is 

proved that there exists a system temperature Tcrit  for which the probability of a ‘-’ state is vanishingly small.  It is thus 

guaranteed that the Ising model interior will have extended internal domains of ‘+’ states in response to the ´boundary state of 

‘+’ elements.  

In light of its profound insight into the cooperative long-range behaviour of short-range microscale interactions in 2d and 3d physical 

(and mathematical) systems, Figure 12 sketches elements of the 1935 mathematical demonstration for the 2d Ising system [6].  The 

demonstration posed the question of what would happen in a 2d Ising system if, by some minor external event, all edge nodes of a 2d 

Ising model lattice were in the same state.  This boundary state is represented by ‘+’ nodes states around the rim of the Figure 12 Ising 

lattice.  The answer to this question was given by demonstrating that the lattice edge boundary state could allow the existence of 

essentially arbitrarily large internal structures of ‘-‘ lattice node, as indicated by the Figure 12 internal domains of collective ‘-‘ nodal 

states.  The mathematical statement was, in the notation of (1)-(4), that the probability P(si = -1) of a ‘-‘ nodal state at a given ith node 

can be made arbitrarily small by system temperature T being sufficiently small,  

P(si = -1) < ½ (4exp(-exp(-εi/kBT))/(1 - 4exp(-exp(-εi/kBT))2.    (5) 

By (5), there must be a system temperature Tcrit for which the effect of a systematic ‘+’ alignment of the Ising lattice boundary elements 

is to force the ‘-‘ alignment of an arbitrary interior element to be vanishingly small, implying that cooperative action between interior 

Ising lattice elements necessarily reduces the probability of an arbitrary element from the expected probability ½ to a collective element 

action probability approaching 0.  Improbability of a ‘-‘ alignment necessarily means probability of a ‘+’ alignment, hence cooperative 

action between elements exists throughout the Ising model interior. 

Establishing the existence of a 2d Ising system temperature Tcrit requiring the vanishing probability of Ising domains of ‘-‘ nodal states 

when the boundary nodal states were uniformly ‘+’, left undetermined the value of the demonstrated temperature.  A 1937 result 

indicated that the critical temperature Tcrit for the 2d Ising model probability expression (5) obeyed the criterion [6] 
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     Tcrit = (1 – Tcrit) / (1 + Tcrit).      (6) 

The celebrated Onsager 1944 complete mathematical analysis of the 2d Ising system for zero external magnetic field -- focusing entirely 

on the nodal interaction mechanics of the Ising lattice system -- confirmed the Tcrit system temperature result (6) and provided grounds 

for describing how the 2d Ising lattice system generated long-range spatial correlation structures at the critical state system temperature 

Tcrit through the existence of a singularity in the interior element-element spatial correlation length, ξ → ∞ [5].  Long-range spatial 

correlation lengths lead directly to well-log spatial fluctuation power-law spectral scaling [1].  

5.2 Generalised statistical mechanics for crustal rock-fluid interaction phase transition at αφcrit ~ 3-4 

While we know with virtual certainty that the porosity state at any node in in a crustal rock-fluid interaction representation lattice is 

dependent on a site energy εi, we do not have means of measuring the crustal rock-fluid interaction site energy in the same way as we 

know the nodal site interaction energy of a spin-state of an iron atom.  For a crustal rock-fluid interaction, it is not clear what physical 

measurement corresponds to the thermal energy of magnetic dipoles relative to a heat bath of temperature T. Crustal rock-fluid 

interactions require, therefore, a more general formulation of how microscale interaction energy is distributed macroscopically in the 

Ising lattice nodal system.   

Jayne [7] developed such an formalism for the distribution of physical property energetics in an Ising lattice.  The basis for Jaynes 

approach was established by Shannon’s mathematical analysis of what has come to be called the entropy of information [8].  As 

permeability is a physical manifestation of pore-connectivity information, it is plausible to think of fluid permeability in a crustal rock 

granular assembly in terms of the information content of porosity connectivity that effectively defines permeability.  Porosity-

connectivity information in a physical system is fundamentally not available to the outside observer except through the probe of fluid 

permeability.  Via the mechanics of information entropy, it is possible to establish a detailed energetics connection between observable 

discrete crustal rock-fluid interaction properties and otherwise unobservable internal flow connectivity structures.  

Following Jayne [7], we suppose that we are able to measure a physical variable f that takes a series of values {fi}  at i = 1……N lattice 

sites.  Our measurement information can then be formulated in terms of the value of fi at the ith lattice site and the probability 0 < pi < 1 

of that value appearing at that site,   

<f> = ∑i pifi,       (7) 

where probabilities are defined so as to sum to unity, ∑ pi = 1.  Shannon [8] showed that a specific distribution of probabilities H(p1…. 

pN) formally allows for the greatest possible uncertainty of the probability distribution, corresponding to the maximum information 

system entropy:  

     H(p1……… pN) = - ∑i pi log(pi).     (8) 

A formal relation between pi and fi is established by maximising H(p1……… pN) under the constraints that <f> = ∑i pifi and ∑ pi = 1.  

The maximisation procedure by Lagrange multipliers gives the probabilities pi as 

pi = exp(-αfi)/Z(α),       (9) 

where Lagrange multiplier α is an integration parameter and Z(α) is the normalising sum of all energy-expectation terms exp(-αfi), 

Z(α) = ∑i exp(-αfi).       (10) 

The observed physical property <f> is then defined in terms of nodal values fi and nodal state probabilities pi, 

<f> = - ∂log(Z(α))/∂α = -1/Z ∂Z(α)/∂α = ∑i fi exp(-αfi)/Z = ∑i pi fi.    (11) 

Applying this physical property analysis to Ising nodal porosity φ gives probability distribution for each nodal porosity φ i,  

pi = exp(-αφi)/Z.       (12) 

As the interaction energy-controlled probability pi for a given value of porosity φi at the ith Ising model node is a good proxy for 

permeability, (12) essentially reproduces the observed empirical relation between permeability and porosity,  

κi = exp(-αφi).       (13) 

Comparing (13) with (1)-(3), it is seen that the Lagrange multiplier integration constant α assumes the desired role of an equivalent to 

temperature for the crustal rock-fluid interaction that links nodal energy to nodal information about porosity-connectivity in the Ising 

system.  With (12)-(13), we can identify the Lagrange multiplier parameter α of (7)-(12) with the observed crustal rock-fluid interaction 

process empirical parameter condition αφ ~ 3-4 derived from (13) and the above displayed crustal formation poroperm data for 

logκ ~ αφ. 

From the vantage point of (12), we may view crustal permeability as a manifestation of porosity probability for crustal rock-fluid flow at 

a given nodal site.  It makes physical sense that the greater the probability of porosity at a lattice nodal site the greater the probability of 
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interactive fluid flow between the given node and nearby nodes.  Put differently, permeability is a form of information about how pores 

connect, and pore connectivity is a form of information about spatial correlation of a pore population.   

On the basis of the parallel between the general mathematical and computational model thermodynamic system (12) and the empirical 

poroperm relation (13), we can understand the above established empirical relation αφcrit ~ 3-4 as physical statement about the crustal 

rock-fluid interactions that extend from standard reservoir rock with 0.03 < φ < 0.3 to deep seated crustal basement rock with an order 

of magnitude lower porosity, 0.003 < φ < 0.03.  For a given crustal rock volume, the parameter α takes values such that the mean 

porosity φ for that rock volume gives αφ ~ 3-4.  We then observe that empirical αφ ~ 3-4 values correspond to a pervasive crustal rock 

state in which long-range spatial correlation spectral systematics S(k) ~ 1/k occur at scale lengths corresponding to spatial frequencies 

1/km < k < 1/cm.   The Ising model lattice node construct also indicates that the αφ ~ 3-4 empirical crustal rock state represents a phase 

change between high mean porosity disaggregated rock in the uppermost crust, and low mean porosity ductile flow rock in the lower 

crust.   

6. CONCLUSIONS -- ROCK-FLUID COUPLING PARAMETER αφ ~ 3-4 FOR BASEMENT FLOW STIMULATION  

Our discussion of crustal rock-fluid interaction in terms of the Ising model gives a plausible physical basis for the four widely-observed 

naturally-occurring crustal flow properties, with well-log spatial correlation evidence that the signature spatial correlation properties 

persist in crystalline basement conditions to at least 8km depth [25]: 

i. Well-log spatially-correlated fluctuations characterised by power-law spectral scaling S(k) ∝ 1/k1 over scale range ~1/cm < k < 

~1/km; 

ii. Well-core sequence spatial variations in porosity that correlate with spatial variations in the logarithm of permeability, δφ ∝ 

δlogκ, over m-Hm scale lengths; 

iii. Lognormally distributed well productivity, κ ∝ exp(αφ), for groundwater, conventional and unconventional hydrocarbons, and 

geothermal fluids, along with fossil flow system mineral deposits; 

iv. Ising model statistical mechanics support for a ‘critical state’ parameter αφcrit explaining (i)-(iii) in terms of maximum 

information entropy for the rock-fluid interaction system. 

It is of interest to consider the implications that these pervasive naturally-occurring crustal rock-fluid interaction properties have for 

stimulating basement rock to achieve commercial rates of heat energy extraction for wellbore-to-wellbore flow.  It can be calculated that 

a properly stimulated crustal volume enclosing a 3-km-long horizontal well-pair with 30-50-meter offset can supply a district heating 

plant with 25kg/s flow of 100oC fluid for 30 years [25].  Compared with past projects to extract heat from crustal basement rock [17-

22], a 3km-long 30-50m offset horizontal wellbore-pair is modest in both spatial extent and fluid flow rate.  We note, however, that past 

projects were based on creating Hm-scale planar ‘cubic-law’ fluid flow structures in rock assumed to have effectively uniform in 

mechanical properties [18-20].  These crustal stimulation projects have failed create the necessary flow structures [23-24].   

Approaching wellbore-to-wellbore flow stimulation on the Ising-model-based poroperm relation (13), κi = exp(-αφi), and/or its 

equivalent well-core empirical relations (ii), δφ ∝ δlogκ, and (iii), κ ∝ exp(αφ), as representative of fundamental crustal poroperm 

properties, we can focus on individual porosity sites as key to the crustal flow stimulation process.  More particularly, we can look at the 

energetics of creating a small change in porosity, or, prospectively, a small change in associated value of α that governs porosity-

connectivity. 

The porosity of a unit rock volume is given by the number n of grain-scale defects associated with the pores.  As above, we let grain-

scale defects be cement bond failures that allow pores to communicate their fluid content with adjacent pores.  As pores have the lowest 

elastic modulus, they are subject to the greatest local strains within a crustal volume undergoing deformation.  For a sample rock 

volume with n defects, spatial connectivity between defects within the sample scales as the combinatorial factor n! = n(n-1)(n-2)(n-

3)……1.  By Stirling’s law, log(n!) ~ n(log(n)-1), the effect of incrementing the defect population of a sample volume by a small 

number δn << n, n → n + δn, is to increment permeability as δlog(n!) = log((n+ δn)!) - δlog(n!) ~ (n+ δn)log(n+ δn) -1) - n(log(n)-1), or 

δlog(n!) ~ δn log(n), thus duplicating empirical property (ii), δφ ∝ δlog(κ).   

This pore-node-based construct quantifies the effect on inter-granular fluid flow of introducing a single grain-scale defect into a 

poroperm structure, n → n +1.  For a fluid of dynamic viscosity μ driven by pressure gradient P’, Poiseuille volumetric flow per unit 

breadth of the flow front is Q [m2/s] = P’ Δ3/12μ [Pa/m m3/Pa∙s].  The corresponding fluid velocity is v [m/s] = P’ Δ2/12μ.  For a gap Δ 

comprising a number n defects in the continuum flow structure, the mean gap increment is δΔ ~ Δ/n.  It follows from 

(v + δv)/v = 1 + δv/v = (Δ+ δΔ)2/Δ2 ~ 1 + 2δΔ/Δ, that adding a single defect to the medium increases the gap by Δδ and increases fluid 

velocity by δv/v ~ 2/n.   

For the disseminated empirical granular medium with fluid velocity v ∝ exp(αφ), the equivalent increment gives (κ + δκ)/κ = 1 

+ δκ/κ ∝ exp(δαφ) ~ 1 + δαφ, whence for φ = nδφ, δκ/κ = δv/v ~ δαφ = αφ/n.  For standard reservoir formations with porosity in the 

range .1 < φ < .3, the empirical values of α, 20 < α < 40, give αφ ~ 3-4 fluid velocity increment factor for aquifer formations.  For 

basement rock with porosity an order of magnitude smaller, φ ~ .0075, the value of α increases by an order of magnitude, 300 < α < 700, 

giving an empirical estimate of fluid velocity increment factor αφ ~ 3 for basement formations. 

 

Creating a grain-scale defect in a crustal volume produces greater flow effect if the defect is embedded in a granular percolation flow 

structure than if the defect contributes to a conduit gap in the smooth continuum flow structures of the discrete fracture concept of EGS 
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stimulation.  It follows that energy expended by wellbore pressurization is more effective in dissipating wellbore fluid pressure fronts if 

defects generated by fluid pressures contribute to granularity flow structures than if they contribute to continuum flow structures.  Given 

the extensive evidence of well-log, well-core, and well-flow empirics (i)-(iv) as the ambient condition of crustal rock, we may argue that 

wellbores penetrating crustal media will typically encounter localised disseminated/granularity rather than planar geometric/continuum 

flow surfaces associated with discrete fracture displacement structures.  On the basis of this probability argument, we can interpret 

wellbore-accessible temperature data as evidence of heat transport by flow in spatially-correlated grain-scale poroperm connectivity 

structures consistent with the Ising model of long-range node-node interactions [25]. 

We can further argue that the ambient crustal empirics (i)-(iv) result from the implied energetics of defect insertion through rock-fluid 

interaction.  Rock stress involving fluids is more easily dissipated if fluid permeability stimulation proceeds through spatially-correlated 

fracture-connectivity granularity rather than through spatially-uncorrelated effective-medium planar continuum displacements.  For 

generating ambient crustal fluid-rock flow conditions, the fact that porosity increments require doing work against confining stresses 

means that it is energetically favourable for defect enhancement to proceed in a spatially-correlated granularity medium than in a 

spatially-uncorrelated continuum medium.  Discrete fracture systems may thus be seen to characterize crustal tectonic settings in which 

solid-rock displacement rates due to far-field tectonic plate motion exceed the rate at which fluid pressures can dissipate through slower 

fracture-connectivity mechanisms.  EGS mechanisms based on local wellbore-centric fluid pressurization rather than elastic stress 

generated by far-field tectonics may thus couple more readily to the slower ambient-crust defect injection processes leading to spatially-

correlated granularity than to the faster defect injection processes leading to discrete-fracture displacements. 
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APPENDIX 1 -- MATLAB CODE FOR 2D ISING MODEL LATTICE ENERGY SPATIAL DISTRIBUTIONS  

% Metropolis algorithm for Ising model configuration of spins with coupling coefficient |J| at temperature |kT|. 

%|spin| is a matrix of +/- 1's. 
% Copyright 2017 The MathWorks, Inc. 

numIters = 2^8 * numel(spin); 

for iter = 1 : numIters 
    % Pick a random spin 

    linearIndex = randi(numel(spin)); 

    [row, col]  = ind2sub(size(spin), linearIndex); 
    % Find nearest neighbors 

    above = mod(row - 1 - 1, size(spin,1)) + 1; 
    below = mod(row + 1 - 1, size(spin,1)) + 1; 

    left  = mod(col - 1 - 1, size(spin,2)) + 1; 

    right = mod(col + 1 - 1, size(spin,2)) + 1; 
    neighbors = [spin(above,col);spin(row,left);spin(row,right);spin(below,col)]; 

    % Calculate energy change if this spin is flipped 

    dE = 2 * J * spin(row, col) * sum(neighbors); 
    % Boltzmann probability of flipping 

    prob = exp(-dE / kT); 

    % Spin flip condition 
    if dE <= 0 || rand() <= prob spin(row, col) = - spin(row, col);end 

end 

 

APPENDIX 2 – KTB MAIN WELL CORE POROPERM DATA 

[http://www-icdp.icdp-online.org/sites/ktb/welcome.html] 
 

Depth (m) κ(μD)   φ (%)    Orient #      Sample          Batch      Orient Letter 
4151.73    7.35      .712     0 %H001D33P1    %HB1    s=perpend 

4151.73    51.9      .726     1 %H001D33P2    %HB1    p=parallel 

4153.61    3.5        .361    2  %H001G54P1    %HB1    a=axial 
4153.61    3.8        .276    2  %H001G54P2    %HB1    a 

4251.37    14.8      .509     1 %H003A5P2      %HB1    p 

4251.40    4.2        .516    0  %H003A5P1      %HB1    s 
4341.70    1.06      .477     0 %H004A4aP1    %HB1    s 

4341.70    1.6        .512    1  %H004A4aP2    %HB1    p 

4449.57    64         .914    3  %H005D32P1    %HB1    r=radial 
4449.57    16.3      .836     2 %H005D32P2    %HB1    a 

4513.80    11.4      .548     0 %H006C18bP1  %HB1    s 

4513.92       3          .242   1    %H006C18bP2   %HB1    p 
4593.22    241       .565     1  %H007B7aP2     %HB1    p 

4593.25    1.66      .393     0  %H007B7aP1     %HB1    s 

4648.10    2.9        .406    1   %H008C33P1     %HB1    p 
4648.10    11.6      .621     3  %H008C33P2     %HB1    r 

4688.71    2.3        .399    3   %H009F40P1      %HB1    r 

4688.71    2.9        .511    2   %H009F40P2      %HB1    a 
4820.84      77.1      2.23     3  %H010B10P1      %HB1     

4820.84    9.4        1.32    2   %H010B10P2      %HB1    a 

5012.25    3           .539   2    %H011A5aP1      %HB1    a 
5012.25    5.6        .652    3   %H011A5aP2      %HB1    r 

5083.35    10.1      .606     3  %H012B29aP1    %HB1    r 

5083.35    37.6      .764     3  %H012B29aP2    %HB1    r 
5282.00    65.7      .691     0  %H013A1P1        %HB1    s 

5282.00    62.8      .701     1  %H013A1P2        %HB1    p 
5382.19    1.72      .344     3  %H014G38aP1    %HB1    r 

5382.19    0.51      .34      2   %H014G38aP2    %HB1    a 

5382.19    0.635    .303      2 %H014G38aP3    %HB1    a 



Leary et al. 

 17 

%6150.05   0.136    .907      1 %H023D20aP1    %HB1a   p 

6150.06    4.54      .615     3  %H023D20aP2    %HB1a   r 
6150.06    4.28      .692     0  %H023D20aP3    %HB1a   s 

 

 


